Calcium Carbonate Precipitation by Using Plant-derived Urease for Soil Improvement

Dr. Ahmed Miftah

Bio-geotechnical Engineering Cyprus International University

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Outline

- What's Bio-geotechnical Engineering?
- What's EICP treatment?
- What's EICP solution containing and applications?
- What's the mechanism of enhancing the geotechnical properties of soil?
- Potential Applications of EICP?
- Laboratory study.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

What's Bio-geotechnical Engineering?

"It a novel geotechnical branch that aims to develop biology-based

processes and products in order to substantially mitigate the pressure

from the Geo & Civil Engineering activities on the environment"

Delft University of Technology (TU Delft)

K.T.M.M.O.B INŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

What's EICP treatment?

• EICP is precipitating the calcium carbonate (CaCO₃) using the urease enzyme, which is derived from plants (Chemically).

• Precipitating $CaCO_3$ between soil particles causes a reduction in permeability while simultaneously enhancing the stiffness, strength, dilatancy through filling pores, roughening particles and inter-particle bonding (Geotechnically).

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

What's EICP solution containing and applications?

Solution B: Urease and Milk powder

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

What's the mechanism of enhancing the geotechnical properties of soil?

Figure 2: Schematic illustration of inter-particle binding at different cycles of treatment.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Potential Applications of EICP?

Liquefaction Mitigation Fugitive Dust Control Coastal Erosion Mitigation

And more

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

1. Ulusal İnşaat Mühendisliği Sempozyumu

25-26/06/2021

Applicability of Using EICP to mitigate the coastal erosion in Cyprus (Laboratory Study) **Aims**

- The main objective of this study was to evaluate using enzymatic induced carbonate precipitation (EICP) for cementation of beach sand against water surface erosion and scour.
- The surface erosion resistance and scour were studied using mini-jet erosion test.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Using the EICP for Erosion Mitigation(Con...) (Methods)

The used soil in this study is natural beach sand obtained from Famagusta Bay, Cyprus. The

summary of the physical properties of the beach sand presented in Table 1.

Table 1. Physical properties of the sand.

Property	Value
Effective diameter (D ₁₀), mm	0.14 fr(mm)
Median diameter (D ₅₀), mm	0.7
Uniformity coefficient (C _u)	6.42
Coefficient of curvature (C _c)	1.4
Minimum void ratio (e _{min})	0.562
Maximum void ratio (e _{max})	0.880
CaCO ₃ , %	62.50
Specific Gravity (G _s)	2.70
USCS Classification	SP

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Using the EICP for Erosion Mitigation(Con...) (Methods)

Figure 2. Shows a mini-jet erosion test set-up (According to Al-Madhhachi et al. 2013 and Montoya et al. 2018).

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Using the EICP for Erosion Mitigation(Con...) (Methods)

The erosion rate was calculated using equation as follows (Partheniades, 1965; Hanson, 1990),

$$E_r = k_d (\tau_i - \tau_c)^{\alpha}$$

- Er is the rate of erosion (m s^{-1});
- k_d is the erodibility coefficient (cm³ N⁻¹ s⁻¹);

 τ_i is is the maximum shear stress which is generated by the jet velocity at the nozzle (Pa);

 τ_c is the critical shear stress (Pa);

 α is an exponent.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Using the EICP for Erosion Mitigation(Con...) (Methods)

Figure 3. The program used for calculating erodibility parameters (Daly et al. 2013).

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Using the EICP for Erosion Mitigation (Con...) (Methods)

Figure

Test.

4.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Using the EICP for Erosion Mitigation (Con...) (Results)

Table 2. Mini-Jet erosion testresults for pure sand anddifferent cycles of treatment.

K.T.M.M.O.B

IMO

İNŞAAT MÜHENDİSLERİ ODASI

CHAMBER OF CIVIL ENGINEERS

Sample	Case	$ au_i$, Pa	$ au_c$, Pa	Kd, cm ³ /N-s	Erosion rate, mm/s		CaCO ₃ , %		Category
					Value	Mean	Value	Mean	
C0 S1	Control	10.87	0.03	274.36	29.75	31.66	-	-	Very Erodible
C0 S2	Control	10.87	0.07	310.74	33.57		-		Very Erodible
C1 S1	One Cycle	47.84	0.09	2.34	1.12	1 1 1	1.76	1 0 7	Very Erodible
C1 S2	One Cycle	47.84	0.17	2.43	1.16	1.14	1.87	1.02	Very Erodible
C2 S1	Two Cycles	69.59	2.62	1.14	0.76	0.77	2.564	2 61	Erodible
C2 S2	Two Cycles	69.59	1.19	1.14	0.78	0.77	2.661	2.01	Erodible
C3 S1	Three Cycles	69.59	8.96	0.68	0.41	0.26	3	2 05	Moderately Resistant
C3 S2	Three Cycles	69.59	11.71	0.53	0.31	0.30	3.1	5.05	Moderately Resistant

1. National Civil Engineering Symposium

Using the EICP for Erosion Mitigation (Con...) (Results)

Figure 5. Categorization of treated samples according to Hanson and

Simon's (2001) classification.

İNSAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

C2C1

IMO

1. National Civil Engineering Symposium

Using the EICP for Erosion Mitigation(Con...) (Results)

(b)

Figure 7. SEM micrographs of (a) pure beach sand, (b) bio-cemented sand.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

1. Ulusal İnşaat Mühendisliği Sempozyumu

25-26/06/2021

Using the EICP for Erosion Mitigation(Con...) (Results)

Figure 8. X-ray powder diffraction pattern of pure beach sand, and bio-cemented sand.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

1. Ulusal İnşaat Mühendisliği Sempozyumu

25-26/06/2021

Using the EICP for Erosion Mitigation(Con...) (Conclusion)

The findings of this research indicate that the enzymatic-induced carbonate precipitation (EICP) can potentially be an effective technique in marine environment applications. Overall, these results show the applicability of EICP in coastal erosion mitigation.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

References

- Al-Madhhachi, A. S. T., Hanson, G. J., Fox, G. A., Tyagi, A. K., & Bulut, R. (2013). Measuring soil erodibility using a laboratory "mini" JET. Transactions of the ASABE, 56(3), 901-910.
- Daly, E. R., Fox, G. A., Miller, R. B., & Al-Madhhachi, A. S. T. (2013). A scour depth approach for deriving erodibility parameters from jet erosion tests. Transactions of the ASABE, 56(6), 1343-1351.
- Montoya, B. M., Do, J., & Gabr, M. M. (2018). Erodibility of microbial induced carbonate precipitation-stabilized sand under submerged impinging jet. In IFCEE 2018 (pp. 19-28).
- Hanson, G. J., & Simon, A. (2001). Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrological processes, 15(1), 23-38.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Thank you

K.T.M.M.O.B INŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

